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A unified treatment of several upwind shock capturing algorithms is presented. Each 
algorithm has a Riemann initial value problem as its basis. The treatment of boundaries 
involves solving the associated Riemann initial-boundary value problem. The first author’s 
algorithm, applied to multidimensional Euler equations in general geometries, is then 
presented. Its worth is verified by various calculations, which include Mach 8 supersonic flow 
past a circular cylinder. 

1. INTRODUCTION 

Coventional implicit finite difference methods based on central difference approx- 
imations of the spatial derivative terms in the Euler equations are prone to failure 
when “capturing” strong shocks. They also need an artificial dissipation term, the 
coefficient of which must be judiciously chosen for convergence. Conventional 
explicit schemes based on the Lax-Wendroff discretization also suffer from a similar 
lack of robustness in computing complex flows with shock waves and steep gradients. 
While these schemes have been widely used on a variety of problems (see [3] for 
references) that list of solved problems does not include flows with strong shocks (say 
Mach 5 upstream, normal to the shock), when the shocks are captured. 

A main drawback of most finite-difference schemes is that discontinuities are 
approximated by discrete transitions, that when narrow, usually overshoot or 
undershoot, or when monotone, usually spread the discontinuity over many grid 
points. 
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Upwind difference algorithms have been designed and used over the years, largely 
because of their success in treating this difficulty. In particular the Murman-Cole 
scheme [ 141 has been the main element of successful production codes, used to solve 
the small disturbance equation of transonic flow throughout the world. 

Although this scheme does treat discrete shocks very well, it has a different draw- 
back-it possesses numerically stable, nonphysical expansion shocks. 

Engquist and Osher [5-71, developed, circa 1980, a monotone upwind scheme for 
scalar conservation laws and applied it to the small disturbance equation of transonic 
flow. Osher then developed a generalization of the scalar algorithm for hyperbolic 
systems of conservation laws [ 161, which was further studied by Osher and Solomon 

[191. 
The Osher scheme for systems is an upwind shock “capturing” algorithm applied 

to the unsteady Euler equations. It resembles several others, such as Godunov’s 18 1, 
Roe’s [ 2 11, and Steger and Warming’s (201. It can be applied to essentially all hyper- 
bolic systems of conservation laws arising in physics, but becomes relatively simple 
for Euler’s equations in general geometries using body fitted coordinates. The precise 
algorithm will be given in Sections II and IV. 

The Osher scheme is based on a Riemann solver, as is Godunov’s, but compression 
and rarefaction waves are used to approximate shocks. This leads to a simpler and 
smoother algorithm. The numerical flux functions, which are at least continuously 
differentiable, are written in closed form, and include various switches which make 
them upwind. The algorithm reaches steady shock solutions exactly (for constant 
states in either side of the shock) on the grid with a one or two point monotone tran- 
sition The existence and a uniqueness result for these discrete shocks was given in 
[ 191, as was a proof that limit solutions satisfy the entropy condition. 

Geometric properties of discrete shocks for Godunov’s, Roe’s, and Osher’s schemes 
were analyzed in [ 171. The sharp monotone profiles property holds in several space 
dimensions in general geometries for Osher’s scheme if each one dimensional 
operator “sees” a shock. This was shown numerically in 1191 for the isentropic Euler 
equations in Cartesian coordinates, in (171, both analytically, and numerically for 
scalar problems, and in this work and in [3] for the full Euler equations in various 
geometries. The last calculations are presented in Section VI. 

Reference [3] is a parallel work to this one, in which we present the algorithm, the 
results of various calculations, and emphasize the aerodynamical aspects of this 
method. 

The outline of this paper is as follows: In Section II, we review upwind schemes, 
stressing Godunov’s method which uses the Riemann initial value problem. We then 
review Osher’s scheme for general systems in one space dimension of the form 

91 +f(qL = 0. (1.1) 

In Section III we present and analyze a method for treating computational and 
physical boundaries based on solving the initial-boundary value Riemann problem. 
This applies directly (in different ways) to interior differencing using either 
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Godunov’s or Osher’s methods. In Section IV we present the closed form Osher 
algorithm for Euler’s equations in general geometries (including moving coordinate 
systems), for both the interior and boundary differencing. Three basic forms of the 
differencing, which are very similar, are presented. It is proven in the Appendix that 
all limit solutions satisfy the correct jump conditions. This is not completely obvious, 
because of the involvement of the independent variables as a result of coordinate 
changes. The relative merits of the three approaches are discussed. Boundary 
conditions for Euler’s equations in general geometries are given in Section V. 

In Section VI we discuss the results of various calculations. These are also 
presented in Figs 3 to 12. Besides the strong shock results for one space dimension, 
we mention here the particular case of two-dimensional Mach 8 flow past a circular 
cylinder. The crispness of the shock transition is obvious (Figs. 8 and 9) and the 
agreement with a shock “fitted” solution obtained by Lyubimov and Rusanov [ 181 is 
quite good (Figs. 9 and 10). Other accurate calculations are presented in this section, 
including duct flow through a Lava1 nozzle and supersonic flow past a wedge airfoil. 
More examples are given in [3]. 

Section VII contains some comparisons and conclusions. 
In future work we shall present implicit implementations of this algorithm, and a 

treatment of second order accuracy. 

II. REVIEW OF UPWIND SCHEMES 

We begin with Godunov’s approximation to 

4r +f(s>, = 03 t>O,--co<x<oo, 

with initial data q(x, 0) given. 
Here 

9 = (413*-., qJT, f(4) = w(s>Yddm’~ 

and the Jacobian matrix as(q) = A(q) has real eigenvalues 

4(q) <U) < *-* < &f(q)2 

where each Ai is repeated according to its multiplicity. 
We set up the rectangular lattice made up of 

~j~=((X~t)~Xj~~/*~X<Xj+~/~~tn~t<f”+l} 

=.s;..<PTn, 

(2.1) 

where, for simplicity, we take xj =j Ax, t” = n At with j, n any integers, n > 0. 
We wish to construct an approximate solution which is piecewise constant, with 

4,; - 4(x, 1) in ai,,. 

58 115Oi3~9 
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Godunov in [8] does this as follows. Given q(x, 0) for x in 4, let 

1 
qg = dx I dx, 0) dx ,pj 

be the approximate solution in Rj,,. Then we advance the approximate solution in 
time by solving a sequence of Riemann problems. 

A Riemann problem for (2.1) is defined to be an initial value problem, with 
piecewise constant initial data of the type 

4(x, 0) = 4 L for x<O 

4(x, 0) = qR for x > 0. 

Lax, in [ 111, has constructed the solution to (2.1) for lqL - qR 1 small enough, 
given certain hypotheses concerning strict hyperbolicity, genuine nonlinearity, and 
linear degeneracy. For the moment, we only assume that a solution exists, which is 
physically correct, and which is of the form q(x, t) = q(x/t), a similarity solution. 

Then Godunov’s algorithm continues by solving the initial value problem with 
piecewise constant data throughout. For II = At/Ax sufficiently small (the CFL 
condition), there is no interaction between different Riemann problems, and a 
solution qd(x, t) is obtained for all X, and 0 < t <At. 

Then qj is defined to be the space average of qh(x, t) over 3j at t = At: 

q.t = -j&.,, h(x, f’) dx. 
I 

Repeating gives us 

i qd(x, t”+‘) dx. 
Jj 

If (2.1) is integrated around Qj,n, the expression above may be written in closed 
form as 

q;+’ = 4; - w-y+ I/2 -f y- ,,2h (2.2) 

wheref,“+112=f(q(xj+l/2, t)), for any t strictly between t” and t”+‘. The function qd 
is constant there, since we have a similarity solution. Scheme (2.2) is said to have the 
conservation form. 

To appreciate approximate solutions to Riemann’s problem, consider the linear 
case:f(q) =Aq, with A a constant matrix which we take to be diagonal, 

(2.3) 
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with /1’ a do x do null matrix, /i + a d, x d, positive definite matrix, and /i - a 
dp X d- negative definite matrix. 

Let PO, P+, P- be the natural projections onto the corresponding invariant 
subspaces of A. Then, Godunov’s method is easily seen to reduce to 

qj “+‘=qj”-k[P+A(qj”-qqJ-,)+P-A(qJ+,-q;)], (2.4) 

sofi+ ,,2 = PtAqj + P-Aqj+, , in this case. 
This is the well known Courant-Isaacson-Rees upwind scheme (41 for the linear 

equation. For nonlinear problems, a scheme of this type is often used, i.e., the 
algorithm is of the form 

qi “+’ = qJ - V,t,A(qJ>(sJ - qjn-1) + PjT,A(qJ)(qJ+, - qjn)), (2.5) 

where the Jacobian matrix, A(q), is linearly equivalent to a matrix of type (2.3) at 
each qy, and the PLn, Pj~n are the natural projections onto these subspaces; see, e.g., 

121. 
Unfortunately, this scheme is not in conservation form, i.e., it is not of type (2.2) 

above, for some numerical flux functions fjP ,,z, fj+ i,*. Thus, it must be used together 
with shock fitting at discontinuities. This has also been done in [ 2 ]. 

The proper nonlinear conservation form of (2.4) was given by van Leer [24], and 
follows after introducing the matrix IA ] = P+A -P-A. The scheme is of form (2.2), 
with (dropping superscripts) 

h+ 112 = t if(qjt 1) -f(qj) - IA lj+ 1/2(qj+ 1 - q/)i, 

where IA Ij+ ,,* is some unspecified average, or representative value, of A on the 
interval (qj, qj+ 1). 

A scheme in conservation form allows for “shock capturing.” The Lax-Wendroff 
theorem [ 121, guarantees that limit solutions will be weak solutions of (2.1) and the 
correct jump conditions across discontinuities will be obtained. Moreover, for a wide 
class of physically interesting problems, including those studied below, limit solutions 
will be physically correct---expansion shocks are ruled out. 

One difficulty with Godunov’s scheme lies in its complexity. The Riemann problem 
is often difficult to obtain in closed form. In consequence, users of the scheme, 
including Godunov [ 231, have simplified it by using an approximate solution to the 
Riemann problem. In [23], the “shocks only” approximation was introduced: 
rarefaction waves in the Riemann solution are replaced by expansion shocks. This is 
a dangerous procedure, since the expansion shocks may show up. 

A special averaging routine was recently suggested by Roe (211. Given two vectors 
qL, qR, Roe defines a matrix A(qL, qR), such that lim++ A(qL, qR) = af(q”) and 

f(s’-1 -f(8) =A(qL, qR)(qL - qR). (2.6 1 
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For d > 1 there may be many such matrices. One candidate is always 

AGIL, s”> = J’A(qR + s(qL - qR)) ds, 
0 

for which (2.6) is easily verified. Harten [25] proved that this matrix has real eigen- 
values, for a wide class of equations. Roe’s choice is based on computational 
simplicity. 

Roe’s scheme of form (2.2) is then generated by 

.&+ I/2 = f lf(qj+ 1) +f(qj) - IA(qj, 4j+ 111 (q.i+ I - Si)l* (2.7) 

This scheme is, in general, much simpler than Godunov’s. It is also in conservation 
form. However, it allows limit solutions which possess expansion shocks, because of 
(2.6), and these are obtained in a stable fashion. In fact, for the scalar case, with 

J(q) = 4q2, this reduces to the Murman-Cole scheme using Murman’s shock and 
sonic point operators [ 141, which is well known to possess these stable nonphysical 
solutions [IO]. The Murman-Cole scheme is a “shocks only” Godunov method, for a 
special scalar convex conservation law. 

One positive attribute of both Godunov’s and Roe’s approximations is the exact 
resolution, for for one transition point, of zero speed physically correct shock 
solutions, to their schemes. 

Finally, we discuss Osher’s [ 161 scheme, which is also of form (2.5a). It is an 
extension to systems of the scheme developed by Engquist and Osher [ 5-71, for a 
single conservation law, d = 1, in (2.1), 

fj+ 1,2 = 4 
[ 

S(Sj+ 1) +f(qj) - J"' If'(q)1 dq ]* (2.8) 
qi 

If we define 

f+(q)= j,4 max(f'(s>, 0) ds, 

L(q) = ( min(f'(s), 0) ds, 

then scheme (2.2) with this numerical flux function is such that 

A+ 112 -.I-112 =A+f-(qj) +A-f+(qj) 

with A,hj= f(hjhl - hi) defining the usual difference operators. This is, therefore, a 
flux splitting algorithm. 

Van Leer, in [22], pointed out a geometric interpretation of the E.-O. scheme 
which makes it a Riemann solver-Godunov type algorithm. Namely, for convex 
j(u), the Riemann problem is solved, not using rarefaction and shock waves, but 
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using rarefaction and compression waves. This is done by letting the compression 
waves overturn, and a multi-valued solution is generated. The averaging procedure is 
done over this multi-valued, but continuous, solution manifold. This leads precisely to 
flux function (2.8). The E.-O. scheme is, therefore, a “simple waves only” Godunov 
scheme. Like the full Godunov scheme, it rules out expansion shocks and, in fact, 
enforces an entropy inequality. 

Osher extended (2.8) to strictly hyperbolic systems (distinct real eigenvalues of 
Ws>> by replacing f’(q) by Wq), and defining the path of integration, in phase 
space, as follows. 

Let 2, <i, < ... < i, be the eigenvalues of @ and let r,, rz,..., rd be the 
corresponding right eigenvectors. 

Consider a solution in d dimensional phase space of the system of ordinary 
differential equations 

ds 
z = rk(q(s))* (2.9) 

(Here s is just arc length.) 
Along such a path I-,, the integrand in (2.8) simplifies to 

For Euler’s equations and many other physical systems, the fields are either 
genuinely nonlinear, which means that rk can be normalized so that V,,Ik + rk = 1, or 
linearly degenerate, for which V,k, . rk E 0. 

For a linearly degenerate field, I., is constant on the orbit of (2.9) and 

(2.10) 

where q”, qR are the upper and lower limits of integration. 
For a genuinely nonlinear field, Ak is a monotone function of arc length on an orbit 

of (2.9). This means, among other things, that there exists exactly one point along r, 
or its extension, for which Ak vanishes. There is a unique S for which n,(Q) = 0 and S 
is connected to q” and qB through an orbit of (2.9). 

It is then easy to show 

(2.11) 

The path rj connecting qj to qj+l in (2.8) is then taken to be a continuous 
piecewise smooth union of segments Z$. We begin with k = d in (2.9) emanating 
from qj. Then stop at some end state and use this end value as initial value for (2.9) 
with k = d - 1. Continue until, for k = 1, the last segment r{ ends at qj+, . By the 
implicit function theorem, there exists a unique path if I qj+ r - qjl is sufftciently small. 
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Thus (2.8) is well defined, and just as in the scalar case, the numerical flux 
functions each consist of the average flux (f(qj) +f(e+ ,))/2 modified by the 
addition of flux differences off(q), for certain q on this path, which correspond either 
to sign changes of L,(q) (sonic points), or sign changes from one 1, to the next 1, + , . 

The details have been worked out for certain physical examples, including one- 
dimensional, compressible, nonisentropic Eulerian gas flow in [ 191 and also two- 
dimensional, compressible, isentropic gas flow. 

Desirable theoretical and computational properties (including no nonphysical limit 
solutions) were obtained there, and some were extended in [ 171. In particular, 
monotone, sharp, steady profiles, with a two point, rather than one point, transition 
region, were found, and were shown to be essentially unique. Moreover, in general, 
d - 1 independent functions of q were shown to have only a one point transition 
region for these discrete shocks. (For the example above, these are the entropy p/p’, 
and one of the functions u f (2/(y - 1))c.) 

The k Riemann invariants act as building blocks for the scheme, since for each k, 
they are d - 1 independent functions constant on r,. 

It is often desirable to use implicit methods to approximate (2.1). A standard 
procedure is to being with a method of lines semi-discrete approximation 

a% 
at ---&+1,z -f,-1!2)=--&Atfi-lil’ 

where the numerical flux function is of the form 

.f- l/Z = h(qj, Sj- 1). 

One might, for example, use backwards Euler time integration: 

q;+1-qqJ _ 

At 
--&A+h(q;+‘,q;_‘:). 

(2.12) 

(2.13) 

Other possible time discretizations include Crank-Nicolson. 
To solve the resulting nonlinear system of equations for q”’ ’ = (qJ’+ ’ },T --oo, one 

usually linearizes and uses Newton’s method, with the initial guess q”, the value at 
the former time level. Such a method will converge quadratically near steady state, 
given some smoothness on the flux functions h(qj, qjpl). Unfortunately, for both 
Roe’s and Godunov’s schemes, the flux function fails to be differentiable whenever qj 
and qjtl are connected by a steady shock. This makes implicit methods problematic. 
The E.-O. scheme has (at least) continuous first partial derivatives, as does Osher’s 
extension to systems. This may help explain its superior robustness for the implicit 
aerodynamic calculations performed in [9], and elsewhere. The differentiability also 
makes this scheme more easily accessible for numerical analysis than for Roe’s or 
Godunov’s methods. 
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For future use, we rewrite the flux difference resulting from the expression for 
systems in (2.8) as 

.fi+1/2 -f,-,,qe, (V)’ & +p+’ @f)- da (2.14) 
I qJ 

where (af)’ = P+ af, (af)- = P- ~?f, and the paths of integration are T’-’ and rj, 
respectively. 

III. BOUNDARY CONDITIONS FOR UPWIND SCHEMES 

We now turn to the implementation of both physical and computational boundary 
conditions for upwind schemes. The treatment below is an extension of Godunov’s 
[8,23] boundary treatment to general boundary conditions and general hyperbolic 
systems. 

We consider problem (2.1) to be solved in a quarter space, t > 0, x > 0, with given 
initial data. We first exemplify things by considering the linear constant coefficient 
case, f(q) = Aq, with A defined in (2.3). 

The vector q may be decomposed 

q=POq+p+q+P-q 

as defined in Section II. It is easy to see that boundary conditions must be of the 
form 

P+q = P+DP-q + g IXEo, (3.1) 

where D is a matrix and g = P+g, a vector. We take them both to be constant, for 
simplicity only. 

The initial-boundary value Riemann problem is defined by solving 

for x, t > 0, with q(x, 0) = qR, a constant, and with boundary data (2.1). This is easily 
done using the method of characteritics. For our difference schemes we shall need to 
compute only the resulting boundary values 

q(O,t)=(PO+P-)qR+P+(DP-qR+g) 

and the flux at the boundary: 

Aq(0, t) = P-AqR + P+A(DP-qR + g). (3.2) 

To solve this problem approximately, it is convenient to shift our lattice. Adjacent 
to the boundary begin with Qn1,2,n = (x 10 <x <Ax, t” < t < t”” }, and in general 
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consider aj, ,,2,n for j, n nonnegative integers. For all boxes except those adjacent to 
the boundary we solve the Riemann initial value problem. For q$l, we solve the 
Riemann initial boundary value problem. 

Thus, Godunov’s scheme with this boundary treatment is given by (2.4) for 
j = v + 4, v = 1, 2 ,..., and by 

n+l- n 
q1/2 - 91/z - W+4d’,z - DP-q:,, -g) + P-Ah;,, - d/z)1 

at the boundary. 

(3.3) 

The full boundary values are also obtained, 

qo”+‘= (P” + P-)q;,z + P+(PD-q;,, +g>, (3.4) 

and these values are taken on at x = 0 for all t with t" < t < tn' ‘. 
We now extend this boundary algorithm to the nonlinear problem. We shall do this 

in sufficient generality to include Euler’s equations in higher dimensions with passive 
tangential variables. This system has a multiple eigenvalue, and may have a charac- 
teristic (solid wall) boundary. 

We consider first the strictly hyperbolic noncharacteristic boundary case, which 
means that the eigenvalues satisfy 1, < 1, < ..+ < Ad, and, at the boundary, there is 
an index k for which 1, < 0 < II,, , . We may write the boundary operator as 

B(q>,,o = 0, (3.5) 

where B is d - k vector valued function. 
If each j field, for j > k + 1, is either linearly degenerate, or genuinely nonlinear, 

we may use Lax’s construction, [ 111, to connect the constant state q,,2 to physically 
correct constant left states qo, using only k + l,..., d waves. This gives us a d - k 
parameter family of solutions qo(ck+ 1 ,..., cd), whose differential at Ed+, = ... = cd = 0 
is [-rk+ 1(9,,2L -rd(q,,2)]. We must solve (3.5) with q = qo(ck+, ,..., EJ for some 
set of the ci. 

The mapping B(q(.c,+ 1 ,..., cd)) is a locally one-to-one mapping of Rd-’ into itself, 
if the solvability condition 

detF’,B * Irk+ l(qd-, rd(q,,2)]] # 0 (3.6) 

is satisfied. This is precisely the nonlinear generalization of the rule for selecting 
boundary conditions in (3.1) above. The Riemann initial-boundary value problem, 
may now be solved, at least in the small (i.e., in some neighborhood of a solution to 
(3.5)). 

Thus Godunov’s scheme will be given by (2.2) for j = v + f, with v any positive 
integer, and by (2.2) for j = 4, where the boundary value q. is obtained as above. 

For Osher’s method, the q - k parameter family is obtained, by first solving 

4 = r/c+ l(4)? q(O) = 41/2 
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and obtaining q(sk+ 1). We then use this as initial data, solving tj = rk+ iq), etc., 
arriving at q(Ek+, ,..., d E ). Finally, we solve (3.5), which is again possible in the small, 
given (3.6) above. Osher’s algorithm is then defined in the usual way, except atj = 4, 
where f0 is defined by (2.8), with the integral taken along the truncated path p. 

Next we consider eigenvalues of constant multiplicity. Suppose Ak_, < A, = A,, , = 
A kfy-I < lkty. We require that there be y linearly independent eigenvectors, 
rk,..., rk+y-l, and that this entire field be linearly degenerate. This means that V,Ak is 
orthogonal to the linear span of rk ,..., rk+ yP,. 

Lax’s construction can be easily extended to include such fields. The eigenvalues 
A,(q) are constant along solutions of 4 = rk+,, , p = 0, l,..., y - 1. Thus the right waves 
corresponding to this field give us a smooth y parameter family of contact discon- 
tinuities q(.zk, ek+ I ,..., ~~+~-i), which is independent of the choice of basis 
rkr*.., rk+y- 1 * Each solution has a discontinuity moving with speed A,(q), independent 
of E k,“‘, &k+y-l’ The full Riemann problem may be solved, and Godunov’s scheme for 
the Cauchy problem may be obtained for problems having degenerate fields of this 
type. 

For Osher’s method, we see that the path of integration in (2.8) may be obtained in 
the usual fashion. Moreover, if we define rjk,,,,.k+ ye, to be the union of subpaths 
corresponding to this full field, then the quantity 

1  ̂
IV(q)l 4l = y-’ 1 I Wq)l4? 

rJ k....,k+y-, ,To r$-, 

is easily seen to be independent of the choice of rk,..., rk+ ye 1. In fact I”,; / af(s)\ dy is 
path independent, if the path always satisfies 4 = rk+,,(q), for 0 <p < y - 1. This 
follows from (2.10). 

Thus, Osher’s scheme for the Cauchy problem may be constructed in the usual 
fashion for this problem. 

If the initial-boundary value problem is noncharacteristic (no Aj vanishes at the 
boundary), the procedure at the boundary for both Godunov’s and Osher’s scheme is 
the same as that in the noncharacteristic, strictly hyperbolic case, described above. 

If, on the other hand, the boundary condition is such as to force the boundary, 
x = 0, to be characteristic, we require that the eigenvalue or eigenvalues vanishing 
there satisfy the constant multiplicity, linearly degenerate, hypothesis. Thus, we may 
arrange the eigenvalues in nondecreasing order, with A, = 0 < I,, , at x = 0, and if 
several eigenvalues vanish there, we require that they all be linearly degenerate. The 
boundary operator is again written as (3.5) and the initial boundary value problem 
may be solved, as in the previous case. 

Both Godunov’s and Osher’s schemes now lead to boundary approximations, as in 
the noncharacteristic case. 

The Godunov and Osher algorithms given in Section II for the Cauchy problem, 
and in Section III for the boundary conditions, are globally defined for Euler 
equations as long as cavitation does not occur, i.e., as long as the density stays 
positive. In the use of Godunov’s method, cavitation in the solution of Riemann’s 
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problem indicates a genuine physical cavitation. In Osher’s approximate Riemann 
solution, cavitation occurs when the quantity in the numerator of (4.1 la) below, turns 
negative. So far, this has not happened, even for the flows calculated at very high 
Mach numbers described in Section VI, and elsewhere [3, 191. 

For Godunov’s scheme with this boundary treatment, it is easily seen that the 
entropy inequality is valid up to the boundary. Under certain circumstances this fact 
yields a useful a priori estimate. For both methods, we can show that limit solutions 
are weak solutions satisfying the boundary conditions in the sense of [ 131, and that 
they also satisfy the entropy inequality up to the boundary. This will be discussed in 
future work. 

We do make the following remarks: 

REMARK 3.1. Suppose in Osher’s method at the boundary we have IJq) > 0 on 
all the corresponding subpaths connecting q;,* to qg. Then we have an exact, up to 
the boundary, conservation law: 

(3.7) 

In particular, this is true if (q;- ,,z - qz) is sufficiently small. 

Proof The explicit numerical algorithm may be written as 

for j = 1, 2,..., where we abuse notation, and define q? ,,z = q;f, the boundary value. 
We multiply by Ax/At and sum from 1 to co, arriving at 

The result follows, since 

because our hypothesis guarantees that af(w) = ]c?~(w)] on this path of integration. 

REMARK 3.2. The same result is always valid for Godunov’s method up to the 
boundary. 

The proof is trivial since 

q;-t:,* - qj”- l/Z = _ .I-@?;) --SC?;- 1) 
At Ax 
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for j = 1, 2,..., for qJ’ the solution of the initial or initial-boundary value Riemann 
problem. 

IV. EULER'S EQUATIONS IN GENERAL GEOMETRIES 

Next we turn to the formulation of Osher’s scheme in general geometries, with 
emphasis on the Euler equations. The equivalence of this representation for 
Godunov’s method was presented by Godunov et al. in [ 231. 

We begin with a general hyperbolic system of conservation laws in three space 
dimensions 

qr + E(q), + F(q), + G(q), = 0. 

We now change variables in a smooth one to one fashion: 

r = t, r = lxx, Y, 27 t), II = rl(x, Y? z, 0. c = &x, Y, z5 t>. 

The equations become 

(4.1) 

q, + t,sr + txEr + tyF< + LG, + rrq, + ~3, + %Fr, + ‘!zG, 

+ &qr + CxEs + &F, + L G, = 0. (4.2) 

We define the Jacobian matrix aE = A, aF = B, aG = C and assume that all real 
linear combinations aA + /3B + yC have eigenvalues and eigenvectors satisfying the 
hypotheses of the previous section. 

We consider the three-dimensional analogue of .R,,,, 

with cj = j A(, vk = k Aq, c, = 1 A(, t” = n At, as in Section II. 
We first approximate the < derivative in (4.2), using a frozen coefficient version of 

the Osher scheme. We drop the k, 1, and n sub- and superscripts, 

((<x>jA(q) + (Ty>jB(q) + Ctz>j C(q) + (r,>j I>’ & 

+J9j'I 
((tx>jA(q) + (5y)jB(q) + <tz>j c(q) + &)jz)- 4 4, 

I 
(4.3) 

I 

following (2.14). The usual integration paths are taken, here, and in what follows. 
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We approximate the r,r, [ derivatives in the same manner. For simplicity only, we 
use explicit one step r differencing. 

It is not obvious that the conclusion of the Lax-Wendroff theorem holds for such 
an approximation, i.e., that bounded almost everywhere limits, as the mesh spacing 
goes to zero, are indeed weak solutions. This will be proven in the Appendix, 
Theorem A. 1. 

In addition, this differencing has the following properties. 

(a) Constant states are solutions of the approximation based on (4.3). 

(b) One-dimensional steady (i.e., II, <, r independent) solutions, are resolved 
over two points, as in the Cartesian coordinate case. 

(c) The Jacobian of the mapping is never used in the calculation. 

For the one-dimensional Cartesian case, (2.14) may be rewritten as 

fi+ I/Z -./-l/2 =A-. f(qj+ 1) -I”“’ (W &J 2 (4.4) 
qJ 

thereby reducing the required programming by almost a factor of 4. 
The approximation using (4.3) will not allow this reduction. Thus following the 

“variable coefftcient” conservation upwind algorithm of Abrahamsson and Osher [ 11, 
we have the approximation 

=+[ (tx)j+1/2 A-E(qj+,)+ (ty)j+1/2A-F(qj+l)+ (Tz)j+i/2A-G(qj+,) 

-A- 
I 

'j+' CCtx>j+ I/2 A(q) + Cty>j+ 112 B(q) + Ctz)j+ 112 c(q) 
qi 

+ (C)j+ l/2 I>+ & 
I 

1 

This approximation will lead to a method which satisfies the conclusion of the 
Lax-Wendroff theorem, as shown in the Appendix. Moreover, properties (a) and (c) 
are valid, as is the following: 

(d) The simplification in programming obtained in (4.4) is valid here. 

So far we have not used the following property of Euler’s equations pointed out in 
[ZO] and elsewhere: The flux functions E(q), F(q), and G(q) are homogeneous of 
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degree one, as funcitons of 4, and hence the matrices A(q), B(q), and C(q) are 
homogeneous of degree zero. Let J(<, r, 4, z) be the Jacobian of the transformation, 

Then we may rewrite Euler’s equation in “homogeneous” conservation form 

($),+ (& f$)+U (;j+ty#+W ($)), 

+ (% ($)+M (;)+v (;) +vzG (p)), W) 

+ (& ~)tC,E(~)+IF(3)+1;G(~)j~=O. 

The < derivative is approximated as 

CC! (9 + txE (9 + v is) + <zG (9 Ii llJ.nk,i, 

1 

- dr [i 

( Y/J)j 

(Q/J),j- , 
K>j- I,2 44) + b&J- l/2 w?) + K)j- I,2 Cc?) 

+ (5r)j-I,2 II+ 4 (4.7) 

+ 
i 

(q/J)j+) 

(q,J), [(gx)j+ 1/2A(q) + (&>j+ I/2 B(q) t <t;>j+ l/2 c(q) 

+ Gdj: ,,A - ds 

+ (dd(t.r)j+l/2)E ((!).) + (d-(tJ>).ii-l/2)F (iu)i) + (d-(t2)j+l/2)C; (($) 

+ td-(Sl)j+1/2) (;).I J 

,) 
I 

J 



462 OSHERANDCHAKRAVARTHY 

[(lx)j+ I/Z A(q) + Cty>j+ 112 B(q) + (tz>j+ 112 c(q) 

f (‘-(rx)j+ ,,*)E + (A-(&)j+,,2)F + (Ap(~2)i+,,z)G 

Limit solutions will again be shown to be weak solutions in the appendix. 
Properties (b) and (d) are valid (see [ 1 ] for the verification of (b)). However. 

properties (a) and (c) are not. It is not clear whether this method is ever superior to 
either of the other two, but it does use the homogeneity property in an intriguing 
manner. 

Any of these three methods may be easily used for Euler’s equations of 
compressible gas dynamics, because the eigenvalues, eigenvectors, and in particular. 
the Riemann invariants for the matrices 

41 + LA(q) + &m) + 5, C(q) 

are easily tabulated in this case. 
Euler’s equations are 

Here p is density, U, u, w are the velocity components, e is the internal energy, p is 
the pressure defined by p = (7 - l)(e - @(u’ + t’* + w’)/2)), the local sound speed is 
c = m, the entropy S is defined by h(S) = p/py, for h some monotone function, 
and finally, y is a constant with y =: 1.4 for air. 

Thus 
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where 

463 

It can be shown that the matrix 

has eigenvalues m(C - c) < mti < m(G + c), where mu^ has multiplicity three. The 
eigenvectors corresponding to mu^, span a three-dimensional space. The eigenvalue is 
linearly degenerate, which means V,u^ is orthogonal to this space. A second 
independent function whose gradient has this property is the pressure p. These two 
functions serve as Riemann invariants for this intermediate field. 

The Riemann invariants corresponding to /2, = (ic - c)m are the entropy p/p’, 
u^ + (2/(y - l))c, and any two independent contravariant velocities, say, 

where we assume C& # 0, without loss of generality. 
The linear map U, U, w--t C, C, 6 and its inverse, are defined by 

and 

respectively. 
Finally, the Riemann invariants which correspond to ,I, = (u^ + c)m are p/p?, 

u^ - (2/(y - l))c, 0, and 8. 
The curve ri-’ is made up of piecewise smooth subcurves and their end points q,i, 

qj-l/3, qj-2/3, Sj-1. (Actually qj-1/3, qj-213 can be connected by any subcurve in the 
hypersurface determined by setting u* and p to be constant.) See Fig. 1 for a schematic 
representation of this construction for the two-dimensional case. 
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j-r i 
0 GRID POINTS 

0 POINTS IN STATE SPACE 

c = SPEED OF SOUND 

o = EIGENVALUE 

ii- (Et + uEx + vE+ /(E; + Et) 
II2 

P = PRESSURE 
D - DENSITY 

RIEMANN INVARIANTS 

PATHS q , q : ii - ;, C. p/Pa , v&-uE, 

PATHS a, a : ii, P 

PATHS q , q : 0 + & C. p/Pa. vEx-uE, 

FIG. 1. Schematic representation of Osher scheme. 

The points of intersection are found by solving the following set of ten equations in 
as many unknowns: 

Cal (fJjp,,3 = ($)i. 
( 

2 
22-t-C 

1 i 

2 

Y-1 
= u^+-c 

j-1/3 1 y-l j’ 

Cc) (fqj-, = (&: 

( 

1 2 2 
u--c 

Y-1 1 ( 
= u^--c 

j-I i y-l ’ j-213 

(4.10) 
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The first four equations determine a curve in rjl-‘, in phase space (R5) passing 
through qj. The last four determine I--’ passing through qj-, . The middle two 
determine a surface of codimension three. The points of intersection are determined 

(b) 

(c) 

(Y- I)/2 - 
Pj-l/3 - 

( 

((Y- 1)/2)(~j-lij~I)+cj+cj~I 

cj( l + (Pj- 1 /Pj)(““) @j- 1 /Pj)‘- 1’2)) 1 

p!y-I)/* 

” ’ 
(4.11) 

(y- I)/2 - 

Pi-213 - 
( 

((v - 1)/2)(Z?j - Z;j- 1) + Cj + Cj- 1 

1 

(‘i- I)/2 

Cj-,(l + (Pj/Pj-,)‘1’2y) @j/P,j_l)(p”2)) ‘G’ ’ 

Pj-I my 
Pj-213 =Pj-l/3 ‘Pj-I - 9 

( 1 Pj-213 

,. 

For the first and last genuinely nonlinear fields, we calculate the sonic points 
qj-l/3r 9j-213: 

(4 

(b) 

(cl 

Cd) 

6) 

(0 

(g) 
(h) 

(p,,,)(‘- ‘)‘2 = ((VP l>/(Y+ 1))(tij+(2/(Y- l)lcj) (p,)(y-1112, (4 12) 

ci J 

Pj- l/3 

( 1 
Y 

Pj-l/3 ‘Pj - 5 
P j 

L n 

Uj- */3 = Uj + 
-LCj (1 - (!y)“-“‘2), 

(pj-2,3)(y- I)'2 = ((VP 'l/(7+ ‘)C2/(Y- l))cj-l -zij) (p,- 
.I 1 

)(y-I)/z 
3 

c,j - 1 

Pj-213 ’ 
Pj-2/3 =P,j-1 ~ 5 i 1 Pi- I 

,. A 

Uj-283 = Uj- 1 - hCjm, (1 - (~)cy-‘)‘2), 

We may now compute all the integral (4.3), (4.5), or (4.7). For (4.3), the values of 
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r,, ry3 r*, and & are all fixed at (cj, qk, c,). As mentioned above, the linearly 
degenerate contribution simplifies: 

(a) !1:“: (LA(q) + r,B(q) + r;c(q) + 40’ 4 
/ ’ 

1 

4,-l 1 
=t,E+t,F+t;G+&q if z.Z-~,~ > 0 

q, ? i 
=o if u”i-2,3 ,< 0, 

(b) I 
-q,+ 213 

(t?(q) + W(q) + r: C(q) + u- 4 
-q,i,n 

=o if d,i+1,,3 > 0 

4i’Z 1 
=W+<?.F+<;G+<,q 

J 
if u”/+ ,,3 < 0. 

q/+1 1 

The genuinely nonlinear contributions are 

(4.13) 

(4 

(b) 

Finally 

(4 

1 
4, -*,3 

(<,A (9) + &m) + r; C(q) + U) + & (4.14) 
qi-I 

?iG2/3 if uli-2,3 + ci 2,3 > 0 

= W(q) + &J’(q) + t; G(q) f t,q 
qi-2f.3 if u”i-2,3 + cim 2,2 G 0 

qj-. I if z?-, +cj-, >o 
9i- 213 if Qj+, + cj , < 0, 

1 

4j+ l/3 
(rxA6-z) + r,%) + r; C(q) + t,v & 

qi 

qi+ l/3 qi+ l/3 if if ci+ 1,3 + ci+ ,j3 < 0 ci+ 1,3 + ci+ ,j3 < 0 

= &E(q) + &J’(q) + t, G(q) + (,q = &E(q) + &J’(q) + t, G(q) + (,q ‘lit “j ‘lit “j 
if 4+1/3 fCii,,l>O if 4+1/3 fCii,,l>O 

qi qi if if tj + c,~ < 0 tj + c,~ < 0 
qit l/3 qit l/3 if if uli + ci > 0. uli + ci > 0. 

f9’ (&A(q) + rJm) + &C(q) + r,o+ 4 

= W(q) + Q%) + l; G(q) f 0 

if ti - ci > 0 
if Si - c,; ,< 0 

if Gj- l/J - C,j- 113 > 0 
if l;i- 113 - Cj- 1,~ < 03 

(4.15) 
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(b) i 
9jt1 

(LA (4) + t,m) + r; C(q) + 40 & 
qitm 

4iil if Qi+,-c,i+, <0 

=r,E(q)+5,.F(q)+r,G(z)+5,q qi+2i3 
if Uli+,-cit,>O 

9j+ 213 if Giezji 
qit 2/3 if z?~,~.~ 

We add (4.13), (4.14), and (4.15) to obtain the differencing in (4.3). 
To obtain the differencing in (4.5), we need only compute the integrals in (4.13a), 

(4.14a), (4.15a) at (cj- ,,*, qk, t;,) and (cj+ ,,2, nk, C,), and then use the formula on the 
right in (4.5). 

For the differencing in (4.7), we use the expression on the right for the grid points 
(<j-l/2, VkT ‘ii) and (rj+l/z, qk? &), but the limits of integration are different. This 
presents no difficulties. We merely replace q by q/J. The components transform via 
p + p/J, e + e/J, p -+ p/J. The remainder of the construction is as above. 

We now make some computational remarks. Note that in (4.14a), if u^ + c < 0 at 
both endpoints, the integral is automatically zero, and the sonic points need not be 
computed. Similar remarks hold for all the integrals in (4.14) and (4.15). We also 
note that it is easy to decode U, U, w from the contravariant velocities ti, 6, I?. 

V. BOUNDARY CONDITIONS FOR EULER'S EQUATIONS IN 
GENERAL GEOMETRIES 

We again consider Euler’s equation (4.8), transformed to the system (4.2). Our 
region will be 

This will be appropriate if we use body fitted coordinates, with r = 0 as the 
boundary. For simplicity of exposition only, we omit more general cases which can 
be treated as long as each boundary corresponds to any of r, 11, or [ being constant. 

The space time lattice is made up of rectangles: 

for j = i, 3, ; ,..., n = 0, 1, 2 ,.,., and k, 1 taking on all integral values. See Fig. 2 for an 
illustration of the boundary point discretization. 

We suppress the k, I, and n indices in what follows. 
We begin with the physical solid wall (characteristic) boundary condition, G = 0 at 

c=O. Thus, at the boundary, we have 1, = --mc <AZ =,I, ==A4 =O <As = me. 
According to our analysis in Section III, we can find q,,, the boundary value, by 
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0 1 2 

I I 
boundary interior 

point point 
ii=0 

FIG. 2. Boundary point discretization. 

connecting q,,* to q. on the left, using only a five wave. A simple calculation gives us 
qo, defined by 

coo>“- ‘)‘2 = ( 
Cl/2 - ((7 - 1)/2) u”ll2 p; I)/2 3 

Cl/2 1 
z.$ = 0, 

1 
vo = VII25 

1 
wo = WI/21 

PO= ( 
Cl/2 - ((Y - 1)/2) 4,2 

Cl/2 1 PI/Z. 

We obtain _q,,6, the sonic point for this five wave: 

-ii l/6 = ‘116 = 

(5.1) 

(5.2) 

The approximation of type (4.3) at the point adjacent to the boundary, j = f, is 
obtained replacing the + integral in (4.3) by 

1 
4112 

((LJl,Z A(q) + KJl,Z WI) + (rJ1,2 C(q) + (rr)l,z 0’ & (5.3) 
40 

41:2 if z?,,, + cI12 > 0 

= (<x)1,2 E(q) + <ty>,,, F(q) + (G/2 G(q) + (tr),,z qZ ‘II/~ 
if u^ I/2 + Cl/2 G 0 

40 
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For the differencing using (4.5) at j = 4, we do the same with (&.),, (r,), , (<Z),lr 
(&)O replacing the subscripts i above. This approximation should, for this reason, be 
more accurate than the previous one. 

For the approximation based on (4.7) at j = 1, we proceed as in the initial value 
problem. We replace p + p/J, e + e/J, p -p/J, and the remaining construction of the 
+ integral is as in the previous case. 

Next we consider an open boundary located in the interior of a gas. In this case the 
normal velocity may not be zero except at isolated points. For supersonic boundaries, 
all quantities should be specified at inflow points, and no quantities at outflow. 

Suppose r = 0 is a supersonic inflow point. Then all the quantities p,pu, pu, pw, 
and e are specified at r = 0, with u^ > c there. Then we may treat the boundary values 
as known quantities qo, and the + integrals in (4.3) (4.5), and (4.7) are computed at 
j = 4, with the lower limit replaced by, respectively, qo, q,,, or q,,/J,. 

If r = 0 is a supersonic outflow point, than no boundary conditions are given there, 
and q. = qli2. Again, the + integrals are treated as above, which gives us a zero 
contribution in (4.3), (4.5), but which yields 

r qt:z/Jl/z 
((L)o A (4) + (t,)o B(q) + (62, C(q) + (C)o 0 dq, 

along the usual path, in (4.7). 
For subsonic inflow points, 0 < ti < c, four boundary conditions must be imposed, 

while for outflow points, -c < u^ < 0, one condition is imposed. Oliger and Sundstrom 
] 15 1, have obtained families of boundary conditions for these problems, for which 
they proved well-posedness of the linearized initial-boundary value problem. 

On at outflow boundary, the possible well-posed boundary condition might be to 
prescribe either p, u^, or u^ + (2/(y - 1))~. I n all these cases, we determine q. by 
connecting q,j2 to q. on the left, using only a live wave. 

Suppose we prescribe po, A simple calculation gives us 

po= PO c 1 I/Y 

PI!2 
PI125 

co = pj = c,,2 (AL)‘y- ‘)‘2y, 

(5.4) 

n 1 
Uo = Ul/Z -&c,,2 (1 - (fij”““yJ, 

n 
Go = v ,/2 3 

1 
IGo = w,,2. 
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If, instead, we prescribe ul,,, we arrive at 

@,)'Y- I)/2 = 

c 

(Y - l>P>PO - G/2) + Cl/2 

Cl/2 i 

@,,2)(Y- ‘W, 

po = 

c 

((Y - l)P>(u^O - k/Z) + Cl/2 2y'(y-') 

Cl/2 1 
PI/Z, 

(5.5) 

The sonic point for either of these live waves is the same as that in (5.2). Thus, the 
differencing at the boundary is obtained using these boundary values, just as in the 
solid wall characteristic case. 

For subsonic inflow points, we may prescribe Co, Go,po/p~, and one of u^,, po, or 
u”o+ W(Y- l)>co* (Other possibilities are also listed in [ 151.) We must use 
wave, which gives us the following four equations for the components of qllh: 

P1,61@l,6)y = Pol@o)yl 

” 2 2 
‘116 - - c,,, = co --c 

Y-1 y-l O’ 

l.3 - l/6 = vo, 

ci, ” I/h = wO- 

Then we connect q,,6 to q,,*, via 

u^ ” I/h = u1/27 

PI/h =Pl/Z’ 

a five 

(5.6) 

(5.7) 

This, together with the boundary conditions, gives us ten equations in ten 
unknowns. 

We have 

PI/6 = (Pl,2/PO)“yPO’ 

This also determines c,,~, and hence q,,6. 
If we are given po, then co is known from the boundary conditions, and 

n A 

uO = u1/6 - 2 cc,,6 - ‘0). 
Y---l 

This can be used to determine p. if tie is given instead. 
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Finally, given tiO + (2/(y - 1)) c,, we obtain 

2 A 2 

Yco-- +-- l/6 y - 1 ‘/6 . 

Since the five wave connects q. to q,,6, the sonic point q,,6 is found to be 

-ii Y--l 
l/6=%/6= y+ 1 

c 2 1 
-co-u0 1 

1 

7 y- 

6 - 1/6 = wO 3 

f - I/h = "0, 

(Y- 1112 - 
PI/6 - 

(2/b - 1)) co - ((v - l)/(Y + 1)) u"o 

co 

The approximation corresponding to (4.3), at j = $, is obtained by defining the + 
integral to be 

J 
Qlld 

(Kxh,, A(q) + (5,)1,2 B(q) + CL),,2 C(q) + tt-,)I)' 4 

qu 

41 2 

= x(4,2)[K),,z E(q) + <&J,,, F(q) + (t;h/2 G(q) + (4),/z @I 

41 6 

(7116 if Q,,, +c,,, > 0 

+ C&h,2 WT) + t&h,2 F(q) + (t;h,z G(z) + (c;,hiz ql ql;, 
if ti,,, + c,;, < 0 

40 

Here x(u) = 1 if u > 0, x(u) = 0 if u < 0. 
The boundary approximations for (5.5) and (5.7) are obtained analogously. 

VI. RESULTS 

In this section, we consider the application of the theory discussed in Sections III 
to V to several example problems. We first show results for a one-dimensional shock 
tube problem with a stationary shock wave. The non-isentropic Euler equations for 
this case are 

Figure 3 shows results for a case with Mach number of 2.0 upstream of the shock. 
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X 

0 

FIG. 3. Comparison of pressure distribution for one-dimensional shock tube problem. Mach number 
upstream of shock = 2.00. 

7.0, 

6.0-- 

5.0-- 

4.0-- 

LOGlo(P2/Pl) 
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2.0-m 
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P2/P1 = 0.109843 E+7 -) r" PC P2;l ;0.;66EE'7C = c 

P2/P1 = 0.281041 E+6 0 
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Ml = MACH NUMBER UPSTREAM 

OF SHOCK LINE - EXACT SOLUTION 

= 1000.0 

P2/PI = 0.0 

FIG. 4. Comparison of pressure distribution for one-dimensional shock tube problem. Mach number 
upstream of shock = 1000.0. 
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The two point shock transition is clearly seen. The points on either side of the shock 
are precisely equal to the exact solution at these points. Figure 4 shows the same kind 
of comparison but for an upsteam Mach number of 1000.0. Once again, but for the 
two transition points, the numerical and exact solutions match perfectly (up to 
computer precision). 

The first example discussed above did not require the use of either the boundary 
condition treatment covered in Sections III and IV, or arbitrary coordinate transfor- 
mations. The next example is the quasi-one-dimensional flow through a Lava1 nozzle. 
The computational analysis for this case requires the use of a subsonic outflow 
boundary condition with the pressure specified such that a shock is situated in the 
middle of the duct. The governing equations may be written as 

(6.2) 

The variables q and E are those in Eq. (6.1) and 

PU 
H= pu2 [ I (e + P>U 

while the area of the nozzle varies as a function of X: (A(x)). For the particular case 
considered, 

A(x) = 0.5 + 0.25~‘. (6.3) 

A slight modification of the boundary point treatment of Section V is used to adapt 
the procedure to a grid where the boundary point is located a distance Ax from its 
interior neighbor. For an inflow supersonic Mach number of 2.0, the numerically 
obtained pressure distribution is compared with the exact solution in Fig. 5. The 
agreement is evident, along with the sharp shock transition. 

The third example considered is the supersonic flow past a wedge. The wedge 
surface is laid out aligned with the x axis with the free stream flow inclined to this 
surface. For negative incidence a, a straight oblique shock attached to the leading 
edge of the wedge must result, while for positive a, a Prandtl-Meyer expansion fan 
centered at the leading edge must occur. To solve this problem, we employ an 
independent variable transformation of the type <=x and r = y/x. The desired 
solutions are self-similar with respect to t; and thus variations of q, E, F with respect 
to 5 are set to zero to reduce the governing equations to one spatial coordinate r]. The 
results presented are for a free stream Mach number of 2.0 and the second form of 
the algorithm (Eq. (4.5)) is utilized for this and the next examples. 

First we compare the numerical and exact solutions for a = -10.0” where the 
oblique shock is situated at approximately 30” from the wedge surface. Figure 6 
shows the agreement for this case. Next we consider a = +lO” in Fig. 7. Once again, 
agreement between the numerical and exact solutions is clearly seen. The good 
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- Exact solution 

t4 Numerical solution 

A(X) = 0.5 + 0.25~' 

0 I 
I I I I I 

0.0 0.2 0.4 0.6 0.8 1.0 
X 

FIG. 5. Flow through quasi-one-dimensional Lava1 nozzle. 

(D 
21 M = 2.0, n = -loo m I 

- Exact solution q 

4 . b3 Numerical solution 

aa- 
2 

0.0 9.0 18.0 27.0 36.0 45.0 

FIG. 6. Wedge in supersonic flow of M, = 2.0 and a = -10”. 
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- Exact solution 

19 iTmerics1 solution 

0.0 9.0 18.0 27.0 36.0 45.0 

J = arctan(y/x) X 

FIG. 7. Wedge in supersonic flow with II~,~ = 2.0. a = +lO’. 

behavior of the numerical solution near the points of slope discontinuity in the 
pressure distribution is also obvious. The absence of any oscillations of smearing 
offers some proof of the abilities of the numerical method. 

Finally, we turn our attention to the two-dimensional flow past a circular cylinder 
with a free stream Mach number of 8.0. The computational domain was chosen to 
include the bow shock in its interior. The grid lines were constructed.by first choosing 
an outer boundary shape, drawing radial lines at equiangular increments and drawing 
the other family of lines to be equally spaced between cylinder and outer boundary. 
The calculations were begun impulsively by prescribing free stream quantities at all 
points and in the next step latting the body boundary condition to be fully felt. 
Convergence from such a start clearly demonstrated the robustness of the numerical 
procedure. 

Contour lines of constant pressure obtained from the numerical results are plotted 
as solid lines in Fig. 8. The computational grid is also shown in this figure as a 
superimposed set of dashed lines. The crisp shock transition is clearly evident in this 
portrayal of results. Like the one-dimensional problems, the shock transition for this 
case with the grid almost aligned with the shock takes place in two points. In Fig. 9 
we show the Mach number contours in increments of 0.2. Here we superimpose with 
triangular symbols the location of the shock as predicted by a shock “fit” calculation 
118). Good agreement is evident, especially considering the current first order 
accuracy of our numerical procedure. A comparison of the surface pressure 
distribution between our results and the shock “fitted” calculations of Lyubimov and 
Rusanov [ 18 ] are shown in Fig. 10. Once again reasonably good agreement is 
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--- Computatiom1 grid lines 

M = 8.0 co 

20 x 31 point grid 

FIG. 8. Pressure contours for supersonic flow past a circular cylinder (M, = 8.0). 

Shock shape from 

Lyubimov and Rusanov 

= 8.0 

FIG. 9. Mach number contour plot for supersonic flow past circular cylinder (M,, = 8.0) 
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FIG. 10. Surface pressure distribution for supersonic flow past circular cylinder (M, = 8.0). 
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FIG. Il. Velocity vector plot for supersonic flow past circular cylinder (M,, = 8.0). 
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X 

FIG. 12. Closeup of velocity vector plot. 

observed. There is, however, a sudden change in the pressure gradient at 0 = 45-50’ 
on the sonic line. This is the expansion shock of magnitude O(dx), well-known for 
Godunov-type methods satisfying the entropy condition. If the entropy condition is 
violated, the jump may be O(1); see [22]. As a final demonstration of our results for 
this problem, Figs. 11 and 12 show the velocity field about the circular cylinder. The 
arrows shown represent the direction of flow by their orientation and the magnitude 
by their length. They are drawn centered at grid points. The sharp deceleration and 
deflection of the flow by the oblique shock are clearly seen. 

VII. COMPARISONS AND CONCLUDING REMARKS 

A comparison of the first author’s scheme with Godunov’s and Roe’s can be 
summarized as follows. 

(1) Osher’s scheme is a first order, “monotone,” upwind scheme in conser- 
vation form. Its use of simple waves rather than Hugoniot curves yields a simpler 
algorithm than Godunov’s, and enables general geometries to be easily treated. 

In the case of a single steady shock, Osher’s scheme will, in general, have two tran- 
sition zones with (d - 1) independent quantities varying over a single zone. Roe’s and 
Godunov’s will in general have one transition zone. 

These upwind schemes admit a natural and general treatment of boundary con- 
ditions. 
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(2) The smoothness property mentioned above may make Osher’s scheme 
better suited for use in an implicit mode. 

(3) Unlike Roe’s scheme, Osher’s scheme satisfies the entropy condition for 
systems of equations in several space dimensions. Roe’s scheme can be fixed to 
remove steady expansion shocks in one space dimension [22]. 

(4) For Euler’s equations, Osher’s scheme requires evaluation of the flux 
function at two intermediate state points per grid point, while Roe’s requires one such 
evaluation, in addition to the necessary expansion shock corrector. This is assuming 
no sonic points are present. Both schemes require an additional flux evaluation in the 
presence of a sonic point. 

For future work, it should be noted that both Osher’s and Roe’s schemes allow 
relatively simple field by field nonlinear decompositions. This allows the construction 
of second order accurate bounded variation extensions. 

APPENDIX 

Let (4.2) be approximated by (4.3) for the < derivative, with analogues for the 9 
and c derivatives. Let the t approximate derivative be taken in any conservative 
consistent way. Then we have: 

THEOREM A. 1. Suppose qjnk, + ~(5, q, <, 5) bounded almost everywhere as 
A<, A?, A<, As -+ 0. Then q is a weak solution of (4.2). 

ProoJ We suppress the k, I, n indices and show that, for any Q(l) E Cr: 

The remainder of the proof will follow in an obvious fashion. 
We may rewrite the expression on the left in (A.l) as 

f 

.j--cc 

( 
G(qj+ 1) 1 G(qj- 1) 9j+II-9j-Iz 

(A.21 

+ (rz),i 
) i 

+ (c,ji 
2 
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+ f! @(<iI 
i:-m L 

- jui+' I(tx)jA(q) + <ty)j B(q) + (C,)j C(q) + (<,),j 11 dq 

qi 

+ J ” I( A (4) + (ty1.j B(q) + (t;),j c(q) + (<,)I1 & 41-1 I 
= z + zz. 

We must merely show that the second term, ZZ, approaches zero as A< -+ 0. We 
may rearrange the sum to arrive at 

- 2 j=-* @(tj) (j++' I(t.x)jA(q) + Cty>j B(q) + (Cz)j c(q) + (rt)j '1 
41 

- lCtx>j+ 1 A(q) + Cty>j+ 1 B(q) + (rz>j+ L c(q) + <&>j+ 1’1 h)* 

Since @ is smooth with compact support, and the integrals are bounded by 
K Iqj - qj- I 1, for K a universal constant, the first term approaches zero, as a conse- 
quence of the Lebesgue dominated convergence theorem. 

Also, since Ilal-lbll<lu-bl, each of the second set of integrals is bounded by 
KAtlqj+l - qjl. Thus, the second term goes to zero, for the same reason as above. 

Next we have similar result for other approximations. Let (4.2) be approximated 
by (4.5) as above. We have: 

THEOREM A.2. Given the convergence hypothesis of Theorem A. 1, then q is a 
weak solution of (4.2). 

Proof. This will follow the method of the proof above if we can show that 

This follows in a familiar fashion from the Lebesgue dominated convergence 
theorem. 

Finally, we can show an analogous result for (4.7) as an approximation to (4.6). 
We omit the (familiar and easy) details here. 
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